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A B S T R A C T 

 

Portfolio Optimization has been of great importance for both professional and retail investors. Successful 

portfolio construction has allowed investors to manage risk by maintaining a well-diversified portfolio. Mean-

variance modern portfolio theory is a mathematical  framework that has traditionally aided professional 

investors to construct a portfolio with minimum risk through the reduction of correlation between assets within 

a portfolio. The performance of most portfolio optimization methods, including mean-variance modern 

portfolio theory, has been heavily dependent on the prediction of future stock prices. Although traditional 

mean-variance portfolio optimization methods work sufficiently to create a minimum risk portfolio, many 

investors find it hard to achieve their ideal expected returns. This is mainly because of its weak prediction of 

future stock prices. Our paper uses our PLUS+ algorithm to obtain the least correlated stocks and random forest 

classifier (RFC) machine learning, with mean-variance optimization in Python programming language. Our 

portfolio optimizer has allowed better prediction of future stock prices and significant reduction in asset 

correlation specific risk. As a result, our optimized portfolio has outperformed the Standard and Poor's 500 

(S&P 500) index and traditional mean-variance optimization from a return, risk, and return-risk ratio 

perspective. 

 

1. Introduction 
 

Portfolio optimization is the construction of a portfolio 

consisting of the best selection of financial assets. Portfolio 

optimization has been an important investment and trading 

strategy utilized by both retail and institutional investors to 

generate high returns within a reasonable margin of risk. 

Generally, optimized portfolios are designed to maximize 

expected returns while minimizing risks [1]. 

 

Mean-Variance Analysis is a modern portfolio optimization 

theory derived from a mathematical framework which 

prioritizes the less risky portfolio assuming that expected 

returns are the same. Portfolios with increased risks are only 

chosen when there are higher expected returns to justify the risk 

to reward [2]. Risk can be primarily categorized into systematic 

risk and specific risk. Specific risk refers to the specific risk 

associated with that particular asset while systematic risk refers 

to the market risk common to all assets. Specific risk can be 

mitigated through the reduction of correlation between assets  

within a portfolio by means of diversification. From a 

mathematical theoretical perspective, as the number of 

uncorrelated assets approach the limit infinity, specific risk 

approaches the zero. Systematic risk, on the other hand, cannot  

 
be reduced by diversification. Systematic risk can be represented 

by the standard deviation of the portfolio and mitigated through 

simultaneously using long and short strategies to create a market 

neutral portfolio. Therefore, Mean-Variance portfolio 

optimization factors the assets’ expected returns, volatility, and 

correlation with other assets in the portfolio. [1, 3, 4] 

 

Expected return refers to the future performance of the stock. It is 

a prediction of the future direction and amplitude which the stock 

will take. Accuracy of the expected return forecast is crucial 

towards the performance of the Mean-Variance Optimized 

portfolio. Existing studies have relied on statistical and machine 

learning methods to predict expected returns.  

 

Common time series statistical methods include autoregressive  

conditional heteroscedasticity (ARCH) [5], generalized 

autoregressive conditional heteroscedasticity (GARCH) [6], and 

autoregressive integrated moving average (ARIMA) [7] models 

used to forecast expected returns by analyzing historical pricing. 

Common machine learning models include support vector 

regression (SVR) [8, 9], logistic regression (LR) [10, 11], and 

random forest classifier (RFC) [12, 13]. Previous studies have 

indicated that  machine learning is better suited for prediction of 

non-linear and non-stationary assets like stock prices [14]. 
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Volatility, representing systematic risk can be quantified using 

historical standard deviation of the asset. Alternatively, specific 

risk will be mitigated by constructing a portfolio with the least 

correlated assets [15]. 

In Summary, our paper proposes to design an optimized 

portfolio using Mean-Variance portfolio optimization theory 

and machine learning to predict an asset’s expected return. Our 

approach can be summarized as the following: 

 

1. Portfolio Uncorrelated Stock (PLUS+): We designed an 

algorithm named PLUS+ to choose n least correlated assets to 

form a portfolio from a universe on n assets.  

(n refers to a numerical constant variable which can be adjusted to the 

number of assets desired in a portfolio and universe refers to all assets 

or a subset of assets.) 

 

2. Compare accuracy of machine learning models in 

prediction of future expected returns. 

 

3. Generate expected returns of n assets chosen by PLUS+ 

using most accurate machine learning model. 

 

4. Using Python programming language to computerize the 

weightage of each asset in our PLUS+ portfolio. 

 
2. Methodology 
 

This section introduces the methods used in our approach. 

 
2.1. Data Used 

 
For this paper, our team focused only on stocks within the 

Standard and Poor's 500 (S&P 500) which we define to be our 

universe of stocks. We set the number of stocks in our portfolio 

for this paper to n = 10. Python support libraries NumPy and 

pandas were used for the reading, cleaning, and manipulation 

of data. Historical price data for our universe of stocks was 

scrapped from Yahoo Finance using the yfinance API for 

python. Stock price data outside 2 years of training data was 

scrapped outside of the Coronavirus disease (COVID-19) 

period, to simulate normal market conditions. The model used 

2 years of historical price as training data from 1st January 2018 

to 31st December 2019, to predict future stock price movements 

from 1st November 2020 to 1st February 2021 (3-months), and 1st 

November 2020 to 1st November 2021 (1 year). 

 
2.2. Portfolio Uncorrelated Stock (PLUS+) 

  
Our goal in this paper is to find the “least correlated portfolio” 

defined by minimizing the total pairwise correlation between all 

the stocks in the portfolio. 

 

The problem can be modelled using a graph, setting the nodes 

to be the stocks and the undirected edges to be the pairwise 

correlation between the two stocks (nodes) it is joining.  

 

A graph theory visualization modelling the problem is shown 

below: 

 

 

 
Figure 2.2A: Representative graph 

theory diagram on a universe of k = 2 

stocks. (Each node represents a 

specific stock and edges represent 

correlation between 2 respective 

stocks.) 
 

 

 
Figure 2.2B: Representative graph 
theory diagram on a universe of k = 4 
stocks. (Each node represents a 
specific stock and edges represent 
correlation between 2 respective 
stocks.) 

 

 

 

 

Figure 2.2C: Representative graph 

theory diagram on a universe of 100 

stocks. (Each node represents a specific 

stock and edges represent correlation 

between 2 respective stocks.) 
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The canonical problem that arises is thus looking for the subset of 

k nodes which minimizes all the edges between the k nodes. This 

problem is NP-Hard through the following reduction from the NP-

Complete k-clique [16] problem for arbitrary k. 

 

1. Create a new weighted graph G’. 

2. For each edge in G, create the same edge in G’ with 

weight -1.  

3. Find the subgraph H of n nodes which minimizes all the 

edges between the k nodes from G’ 

4. H will thus contain (k-1)! edges with total weight of -(k-

1)! if H is fully connected. If H has less than -(k-1)! total 

weight, a k-sized clique does not exist in G’ 

5. If H has total weight of -(k-1), the corresponding 

subgraph in G will be a k-sized clique. 

 

For a fixed k, it follows much like the k-clique problem for fixed k, 

inspecting each k-sized combination would result in an O(nk) 

algorithm, exponential in k.  

 

Therefore, choosing the S&P 500 as our universe and a portfolio of 

n = 10 stocks will result in a combination of 500 choose 10, which is 

equivalent to 2.46 * 102 combinations. As a result, our team took a 

greedy approach to create a ‘good enough’ k-sized subgraph to 

filter the least correlated stocks based on the following criteria:  

 

a) node that has most numbers of edges with correlation less 

than a threshold [Figure 2.2D] 

 

b) node where the sum of the edges is the lowest [Figure 

2.2E] 

 

 
Figure 2.2D: Representative graph theory diagram on a subgraph of 

k = 3 stocks using criteria a. (Each node represents a specific stock 

and edges represent correlation between 2 respective stocks.) 

 

 
Figure 2.2E: Representative graph theory diagram on a subgraph of 

k = 3 stocks using criteria b. (Each node represents a specific stock 

and edges represent correlation between 2 respective stocks.) 

 

 

 

 

 

 

The initial k sized subgraph was further improved by the following 

algorithm: 

 

The chosen set of stock is improved by iterating every possible replacement 

of a chosen stock and an unchosen stock and finding the replacement which 

decreases the total correlation of the set the most. The maximum iterations 

performed is equals to the number of stocks in the universe.  

 

Time complexity is as follow: 

T(n) = #iteration of outermost for loop * T(outermost for loop) 

         = n * #replacement pairs * O(1) + O(1) 

         = O(n2k) 

Where n = the number of stocks in the universe and k = the number of stocks 

in the portfolio. 

 

In our testing, the number of iterations does not go past #stocks/10 

iterations. 

 
2.3. Forecasting stock prices using Machine Learning 
algorithm 
 

Classification machine learning model were used to forecast whether the 

price of a stock increases in the next time step (30, 90, 180, 365 days). Then 

the expected return is calculated by taking the expected value over the 

Half-Normal distribution with the simple mean and standard deviation of 

the last time step. 

 

The following technical analysis indicators were used as input/ feature 

vectors for the machine learning models: Simple Moving Average, 

Average True Range, +/- Directional Movement Index, +/- optional 

directional index and Moving Average Convergence Divergence (MACD). 

 

The models explored were Logistic Regression (LR), Linear/Radial/Poly 

Support Vector Machines (SVMs), AdaBoost-Decision-Tree-Classifier, and 

Random Forest Classifier (RFC) machine learning and their accuracy was 

measured against actual returns. Implementation of these models were 

from Python machine learning libraries scikit-learn and TensorFlow 
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2.4. Using Python programming language to 
computerize the weightage of each asset in our 
PLUS+ portfolio using Mean-Variance analysis 
 

According to Mean-Variance optimization theory, asset specific risk can 

be reduced through the reduction of correlation between assets in the 

portfolio to find the Global Minimum Variance Portfolio (GMVP). In 

theory, as the number of uncorrelated assets in a portfolio approaches 

infinity, the portfolio risk decreases and approaches zero. Our team 

implemented the Mean-Variance Analysis to a portfolio on the n = 10 

chosen stock by PLUS+ using the PyPortfolioOpt extension library in 

Python. [Figure 2.4A] 
 
 

 

 
 

 
 

 
 

Figure 2.4A: Representative mathematical framework of Mean-

Variance Analysis. 

3. Results and Discussion 
 

This section discusses our results. 

 
3.1. Portfolio Uncorrelated Stock (PLUS+) reduces 
average correlation between stocks within 
portfolio from 0.76 to 0.12 

 
Our PLUS+ algorithm reduced the pairwise correlation of the stocks in a 

portfolio of n = 10 stocks from an initial average of 0.76 to 0.12 in 

polynomial time (O(n2k)).   

 

The best results for the initial set were yielded by finding nodes that has 

the most numbers of edges with correlation less than a threshold 

with a threshold of 0.5.  

 

PLUS+ allows us to narrow down a universe of stocks to select the ‘best’, 

least correlated subset of stocks to construct a diversified portfolio. This 

significantly reduces asset specific risk on top of the traditional mean 

variance analysis to minimize portfolio risk. 

 
3.2. Random Forest Classifier (RFC) outperforms 
other machine learning models for expected 
returns forecast accuracy 
 

Model Average 

accuracy 

Random Forest 

Classification 

0.8932 

Support Vector 

Machine (Linear) 

0.88465 

Logistic regression 0.88312 

Adaboost 0.85785 

Support Vector 

Machine (Poly) 

0.80785 

Support Vector 

Machine (Radial) 

0.70812 

 

Figure 3.2A: Representative python 

output of average accuracy of 

machine learning models for 

predicting future expected returns   

 
In terms of the predicting future expected returns, Random Forest 

Classifier (RFC) had the greatest accuracy compared to Logistic 

Regression (LR), Linear/Radial/Poly Support Vector Machines (SVMs), 

and AdaBoost-Decision-Tree-Classifier machine learning models. 

 

As a result, our team decided to focus on Random Forest Classifier (RFC) 

machine learning model for predicting the expected returns for our 

portfolio optimization.  
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3.3. Results of our Mean-Variance portfolio 
optimization with Random Forest Classifier (RFC) 
and PLUS+ against standard benchmarks 

 

 
Figure 3.3A: Representative python output of 

annual return, annual volatility, and Sharpe ratio 

of our portfolio optimization using:  

       1) Portfolio Uncorrelated Stock (PLUS+) 

       2) Random Forest Classifier (RFC) 

       3) Mean-Variance Analysis   

 

 
Figure 3.3B: Representative python output of 

annual return, annual volatility, and Sharpe ratio 

of the traditional portfolio optimization using 

historical mean for expected returns as a 

comparison benchmark  

 
Our optimized portfolio using Portfolio Uncorrelated Stock (PLUS+), 

Random Forest Classifier (RFC), and Mean-Variance Analysis generated 

a higher expected annual return of 25.4 % in comparison to 14% when 

using a traditional mean-variance analysis with historical mean. A return 

of 10% after accounting for transaction fee between 0.5% to 1% is 

considered a relatively good return on investment by investors. As our 

model refactors only every 90 days, and focusses more on an investment 

horizon of 3 months to a year, transaction cost are minute and negligible 

due to stability of weights. Our portfolio also outperformed the traditional 

mean variance analysis with a Sharpe ratio of 1.58 to 0.97. A Sharpe ratio 

above 1 is considered adequate while a Sharpe ratio above 1.5 is 

considered good. Furthermore, our portfolio has volatility percentage on 

14.8 % which is within an acceptable range. Volatility generally fluctuates 

between 10% and 20%, averaging around 15%. Despite our portfolio 

having a higher volatility by 2.4% compared to the traditional mean-

variance analysis, our higher annual expected annual return justifies the 

risk to reward. [Figure 3.3A and Figure 3.3B] 

 

 

 

 

 

 
Figure 3.3C: Representative python line graph of our portfolio against 

benchmarks for a period of 3 months from November 2020 to February 

2021. 

 

Orange Line: Our portfolio optimized portfolio using Portfolio 

Uncorrelated Stock (PLUS+), Random Forest Classifier (RFC), and 

Mean-Variance Analysis. 

 

Blue  Line:  Traditional portfolio optimization by Mean Variance 

Analysis using historical mean. (Benchmark) 

 

Green Line:  Standard and Poor's 500 (S&P 500) (Benchmark) 

 

 

 
Figure 3.3D: Representative python line graph of our portfolio against 

benchmarks for a period of 1 year from November 2020 to 2021. 

 

Orange Line: Our portfolio optimized portfolio using Portfolio 

Uncorrelated Stock (PLUS+), Random Forest Classifier (RFC), and 

Mean-Variance Analysis. 

 

Blue  Line:  Traditional portfolio optimization by Mean Variance 

Analysis using historical mean. (Benchmark) 

 

Green Line:  Standard and Poor's 500 index (S&P 500) (Benchmark) 
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From a portfolio performance perspective, our optimized portfolio using 

Portfolio Uncorrelated Stock (PLUS+), Random Forest Classifier (RFC), 

and Mean-Variance Analysis outperformed both the Standard and Poor's 

500 (S&P 500) index and traditional portfolio optimization by Mean 

Variance Analysis using historical mean benchmarks for the 3 months and 

1 year time horizon. 3 months and 1 year is a good time horizon for larger 

investment firms managing large capital where constant refactoring will 

incur unjustifiably large transaction costs. Our portfolio optimizer can 

also be comfortably used by retail swing traders to minimize their risk 

while generating reasonable returns. 

 
4. Conclusion  
 
This paper proposes a machine learning approach towards constructing 

a portfolio using mean-variance portfolio optimization. Our Portfolio 

optimizer is built by mainly 3 parts: Portfolio Uncorrelated Stock 

(PLUS+), Random Forest Classifier (RFC), and Mean-Variance Analysis. 

Our Portfolio’s refactoring time horizon is ideally 3 months and caters 

to retail swing traders and larger firms’ importance of weight stability 

due to transaction fees. Our model has proven to outperform the S&P500 

index and traditional  mean variance analysis for portfolio optimization. 

Machine Learning methods such as our Random Forest Classifier (RFC) 

approach allows a more accurate forecast of expected returns required 

for the mean-variance analysis, allowing the mathematical framework 

of mean variance analysis to have a better weight allocation. 

 

In summary, mean variance analysis combined with PLUS+ and RFC 

machine learning outperforms benchmarks such as the S&P500 index 

and traditional mean variance optimization in terms of  returns, Sharpe 

ratio, and return-risk ratio. 

 

5. Future works 
 
Although this research paper provides valuable insights on the 

importance of applying computing technology of machine learning and 

algorithms to traditional portfolio optimization frameworks, our paper 

research lacks to address systematic crash risk which can be mitigated 

through hedging. A possible direction for our team would be to look into 

multiple asset classes to hedge against severe market losses [17]. Natural 

language processing can also be introduced towards allowing our 

machines to better understand consumer and market sentiment around 

the world, and to analyze financial and credit statements for a more 

fundamental and qualitative perspective. 
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Disclaimer 

 

This research material has been prepared by NUS 

Invest. NUS Invest specifically prohibits the 

redistribution of this material in whole or in part 

without the written permission of NUS Invest. The 

research officer(s) primarily responsible for the 

content of this research material, in whole or in 

part, certifies that their views are accurately 

expressed, and they will not receive direct or 

indirect compensation in exchange for expressing 

specific recommendations or views in this research 

material. Whilst we have taken all reasonable care 

to ensure that the information contained in this 

publication is not untrue or misleading at the time 

of publication, we cannot guarantee its accuracy or 

completeness, and you should not act on it without 

first independently verifying its contents. Any 

opinion or estimate contained in this report is 

subject to change without notice. We have not 

given any consideration to and we have not made 

any investigation of the investment objectives, 

financial situation or particular needs of the 

recipient or any class of persons, and accordingly, 

no warranty whatsoever is given and no liability 

whatsoever is accepted for any loss arising whether 

directly or indirectly as a result of the recipient or 

any class of persons acting on such information or 

opinion or estimate. You may wish to seek advice 

from a financial adviser regarding the suitability of 

the securities mentioned herein, taking into 

consideration your investment objectives, 

financial situation or particular needs, before 

making a commitment to invest in the securities. 

This report is published solely for information 

purposes, it does not constitute an advertisement 

and is not to be construed as a solicitation or an 

offer to buy or sell any securities or related 

financial instruments. No representation or 

warranty, either expressed or implied, is provided 

in relation to the accuracy, completeness or 

reliability of the information contained herein. 

The research material should not be regarded by 

recipients as a substitute for the exercise of their 

own judgement. Any opinions expressed in this 

research material are subject to change without 

notice. 
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