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Pairs Trading with Machine Learning - Part I
Vince Siow, Elroy Haw, Andreas, Ryan Phua, Rishi, Shane Suxin

Abstract—In this paper, we would like to present a way to
profit from a universe of more than 1800 stocks using a well
known statistical arbitrage technique - pairs trading. This paper
focuses on pairs selection and evaluation of the selected pairs
performance in a portfolio or pairs. Our initial result shows above
average Sharpe ratio with acceptable range of drawdown. Also,
the work on this paper is a precursor to our future work which
will incorporate different machine learning (ML) techniques to
this pairs trading strategy.

I. INTRODUCTION

Pairs trading is a market neutral trading strategy which
involves trading assets which usually highly correlated. These
correlations can stem from the assets being in the same
industry, sector, market beta or even P/E ratios. Execution
of this strategy involves a long position in one asset and a
short position in the other, with the emphasis that both long
and short positions have the same market value. The idea of
pairs trading was first introduced in the mid-1980s by Morgan
Stanley’s quant division and was used to great success.

This paper is divided into several parts. Section II talks
about the literature review and some initial work. In section
III, we introduce formally the idea of pairs trading which cover
pairs selection and trade execution. This is followed by our
final methodology in section IV and evaluation in Section V.
Section VI wraps up the paper with some discussion on the
next phase of our project.

II. LITERATURE REVIEW & INITIAL WORK

It is worth noting that they have been many extensions to the
original pairs trading which incorporates ideas from different
fields. In our literature review, we focus on the ML extensions
of pairs trading. Our initial idea for ML on pairs trading
root from a Stanford CS229 project paper which incorporates
Kalman filter techiniques to estimate the spread - trading signal
[1]. Despite the use of novel ML techniques, we are not
entirely confident in the following two aspects: (1) the use
of Kalman filter on a erratically-behaved time series and (2)
the use of previous period spread as a feature to predict the
next period’s spread as a trading signal. We follow up with
a later CS229 project which includes other features for ML
such as technical indicators [2]. We attempted to reimplenet
what [2] did but faced a problem of overfitting in our model
which resulted in below par out-of-sample performance. The
disappointing intial results are presented in Section 3 of this
paper.

Upon getting bad initial results, we did some rethinking and
understanding of the problem. We realized that most of the
literature that we had seen thus far did not take into account
the slight possibility of forward bias. One notable ignorance
of forward bias is the estimation of the hedge ratio β. Most

literature computed the value of β using data from the training
period. This would introduce a more accurate than possible
estimation of β which is used in the later ML model training.
To mitigate this, we used a sliding window approach to avoid
any chance of forward bias.

We also observed that ML cannot be blindly utilized in
this case due to the high occurrence of noise in the price
movement of assets in the pairs portfolio which can easily
cause the problem of overfitting. Our initial model included
technical features such as exponential moving average, relative
strength index but the result showed huge disparity between
the in-sample and out-of-sample performance. Also, the use
of ML to predict trade directions might be contradictory to
the theoretical basis of pairs trading. If we try to learn all the
subtleties in market movements using ML, we are deviating
from our initial hypothesis of price reversion between the
pairs. These two reasons made us reconsider the role of
ML in our pairs trading strategy. Instead of using ML for
trading signal prediction, we propose using ML as a portfolio
construction tool. The main idea on this will be presented in
Part II of this paper.

III. PAIRS TRADING

A. Cointegration

We consider a spread model as follows. Let Xt and Yt be
two time series which represent the stock prices in our paper.
To serve the purpose of pairs trading, Xt and Yt must be uni-
root non-stationary. Suppose they share some common source
of non-stationarity.

Xt = at + βXWt

Yt = bt + βYWt

If we manage to solve for some linear combination of Xt and
Yt, then we can get a trend-stationary pairs portfolio by

βYXt − βXYt.

This gives rise to the cointegration between Xt and Yt. To
get a pairs portfolio, we simply need to find some linear
combination βX and βY as weights for the two assets.

It is important to note that there is a difference between
correlation and cointegration. Two time series can be corre-
lated but the spread between them can still be diverging. if
the expected value of the spread changes our time, then the
two time series are not cointegrated and using this pair may
cause us to lose a lot of money. This can be illustrated in the
diagram below.
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Figure 1. Despite being correlated, currency pairs
AUD/USD and NZD/USD can be seen to be cointegrated
initially but diverge away from one another at the latter stages.
If we take the spread as constant and execute the pairs trading
on short AUD/USD and long NZD/USD, we will lose a lot of
money.

B. Engle and Granger Procedure

A prominently used technique to test for cointegration
between two time series is the Engle and Grange method [3].
The algorithm can be summed up in the following steps using
the aforementioned time series Xt and Yt.

1) Test Xt and Yt for unit-root nonstationarity I(1) using
the Augmented Dickey-Fuller test. If they are, proceed
to the next step.

2) Run a regression of Yt on Xt.
3) Test the residuals of the regression for unit root station-

arity I(0) using the Augmented Dickey-Fuller test. If
they are, then Xt and Yt are cointegrated.

The above procedure can be simply done using the built-in
coint method of the statstool package in Python.

C. Trade Execution

Once we obtain a pair of cointegrated stocks Xt and Yt, we
first run an OLS regression to get the model

Yt = β0 + β1Xt + εt

where εt is regression error which can be seen as the spread
between Xt and Yt. The next step is to normalize εt into ε∗t .
Our trading strategy is as follows: (1) long $1 worth of Xt

and short $1 worth of Yt when ε∗t > 2 and hold this position
until ε∗t < 0.5, (2) short $1 worth of Xt and long $1 worth
of Yt when ε∗t < −2 and hold this position until ε∗t > −0.5.
Note that we hold no position when the spread is close to zero
[4].

D. Single Pair Example

In this subsection, we perform the above procedures and
choose one pair which meets the cointegration test and
evaluate its pairs trading performance. Firstly, to avoid any
forward bias, we must split our data into a train (2012-2014)
period and a test (2015-2017) period. Note that train data
must always come before test data. Then we perform the
cointegration test using Engle and Granger on the train data
only. The selection threshold is a p-value of smaller than 5%.

From this test, we chose the pair J.P. Morgan (JPM) and
Morgan Stanley (MS). Intuitively, these two companies are
fundamentally relatable and hence, the cointegration between
their stock prices. Subsequently, we perform a regression on
the train data to get the spread from the residuals which is
used as a trading signal.

The train (in-sample) and test (out-of-sample) performances
can be seen in the following diagrams.

Figure 2. Cumulative PnL during the train period of
JPM/MS pair with respect to long 1 unit of JPM or MS.

Figure 3. Cumulative PnL during the test period of JPM/MS
pair with respect to long 1 unit of JPM or MS.

Figures 2 and 3 do not show superior performance from our
pairs trading strategy in terms of absolute returns. However, if
we look beyond absolute returns and consider the shape of the
PnL graph, we can see that we manage to avoid getting into
negative profits. A constant long position in these two stocks
should be considered as ”fortunate” cases because equities in
general experienced a long-term bullish run during this period.
A look into Figure 3 shows that our strategy manage to avoid
the huge drawdown in Dec 2015.

One drawback of pairs trading is the high probability of
having periods of inactivity in trade for the benefit of being
less risky. To post more consistent returns from more trade, we
can consider a portfolio of pairs where different pairs will have
different periods of trading, allowing us to profit throughout.
The final methodology will be further elaborated in the next
section.
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IV. FINAL METHODOLOGY

A. Data Preprocessing

The selection of our trading universe is paramount to the
strategy. In our case, we focus on the US equity market. Our
dataset contains 1824 stock tickers and the coverage starts
from mid 1990s to 2018. Due to the long time frame in the
dataset, there is a high chance of survivor-bias. Hence, we
filter stocks which are fully traded between 2012 to 2018. Let
us call this sample S1.

It would be computationally expensive to do a pairwise
cointegration test among all the stocks in S1. Hence, we focus
on stocks which have higher liquidity by filtering the universe
with average daily volume greater than 1,000,000 and call
this sample S2. In S2 we performed the Engle and Granger
method outlined in Section 3 in a pairwise manner to find out
potentially pairs for the trading strategy which we note as S3.

B. Randomized Portfolio

It is easy and trivial to just include all pairs generated
from the preprocessing step. However, doing this we include
the possibility of non-independent pairs in the portfolio. The
consequence of this can be detrimental as there is a chance
that we hold long and shot position on certain assets at the
same time. Also, we might have the chance of having too
much position in a particular asset which would increase the
risk of our portfolio.

To mitigate the above problem, we use a randomized
portfolio. The construction of this portfolio is outlined using
the following steps.

1) From S3, pick one pair randomly and add into the
portfolio.

2) Remove any pairs that contain any of the two stocks in
the randomly chosen pair from S3.

3) Repeat Steps 1 and 2 until S3 is empty.

For backtesting purposes, we fix the seed of our random choice
picker. The following pairs are generated from seed 7.

FOXA/JCP BSX/HBAN CMCSA/MRK
NVDA/WFC AIG/GILD AMAT/HPQ

KO/VZ FTR/ORCL GE/RF
C/SIRI QCOM/XOM JPM/MS

KEY/RAD

To keep things simple, we assume that we whole equal
weights on each pair in our portfolio. A more optimized
portfolio on better weightings for each pair is possible which
we will reserve for further work in Part II.

V. RESULTS

A. Evaluation Metrics

Before we can proceed with evaluation results, we must
consider the different metrics at play. In our work, we adopt
WorldQuant’s propriety evaluation metrics using Sharpe ratio,
average drawdown, average turnover and absolute returns.

1) Sharpe ratio: We define Sharpe ratio as the information
ratio scaled by the number of trading days in a year.

SR =
mean(daily returns)
std(daily returns)

√
252

We take a Sharpe of above 1.5 to be good.
2) Average turnover: Daily turnover is the dollar amount

of position changed or traded with respect to the total dollar
value of position.

DT = mean

(
$ position traded
total $ position

)
We take average turnover below 0.1 to be good.

3) Fitness score: A combination of the above scores

Fitness = SR

√
|absolute returns|

DT

We take a fitness score of above 1.5 to be good.

B. Evaluation

Using the portfolio generated by random seed 7, evaluation
results are illustrated in the following diagrams.

Figure 4. Cumulative PnL during the train period of pairs
with respect to individual pairs.

Figure 5. Cumulative PnL during the test period of pairs
with respect to individual pairs.

The evaluation statistics are tabulated below.

Sharpe Turnover Returns Fitness
Train 4.35 0.0180 0.0539 7.53
Test 1.46 0.0121 0.0188 1.82
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C. Robustness

The above result is obtained from the random seed 7. To test
for robustness, we try different random seeds from 0 to 19 and
evaluate their performance. The below diagrams illustrate the
performance of our randomized portfolio os pairs with respect
to various random seeds. Note that the x-axis represents the
random seeds.

Figure 6. Evaluation of various metrics on train data.

Figure 7. Evaluation of various metrics on test data.

The train data performs exceptionally well regardless of the
random seed because our pairs are tested to be cointegrated
during this period. This is not really observed in the test
data. Despite not passing some of our good thresholds, our
profits have always been positive, thereby supporting the claim
that pairs trading can work. From this, we understand that
cointegrated relationships might change from time to time
and this prompts us to make another improvement by using a

sliding window in Part II.

VI. DISCUSSION

In this paper, we have performed a basic pairs trading
strategy and built a pairs portfolio which has shown promising
initial results. Despite being a simple strategy, there are many
tweaks that can be made to improve our profitability in pairs
trading.

It is worthy to note that pairs trading is not just limited to
two cointegrated assets. The Johansens’ test allows us to learn
different linear combinations of assets whereby their spread
is stationary with different mean reversion capabilities. How-
ever, for the purpose of exploring the contributions Machine
Learning can bring to pairs trading, we will the possibility of
a larger portfolio as a future research.

From this point, we would like to focus on the following
things in Part II of the research. The ideas are:

• Sliding window improvement for pairs selection
• Reinforcement Learning to determine the best weights for

each portfolio based on various metrics
• Reinforcement Learning to determine the best threshold
σ for positions

• Genetic Programming to learn the best performing port-
folio
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