
Neural Networks and Ensemble Learning in Stock Price

Prediction

Fong Wei Jie, Wu Yayi, Wang Yibo, Zhang Zequn

Introduction

 A Neural Network is a model that operates similarly

to the human brain. A neural network is made up of

numerous small units called neurons; these neurons

are gathered into several layers. Layers are segments

of neurons that are connected to one another through

their neurons. Each neuron is connected to another

layers’ neuron through weighted connections. The

weighted connections are adjusted with a real-valued

number that is associated with them. A neuron takes

the value of a connected neuron and multiplies it with

their connections’ weight. The aggregation of all the

connected neurons is the neurons’ bias value. The bias

value is then passed to an activation function which

transforms the value and assigned it to the connected

neuron in the next layer. This value is circulated

through the entire network. In order to adjust the

weights to fit the output better, a feedback mechanism

known as backpropagation is implemented. One of the

models this paper would focus on Long Short-Term

Memory (LSTM), a recurrent neural network, which

resolves the vanishing gradient problem during

backpropagation.

 Sometimes relying on the outcomes of just one

model may not be enough. Ensemble learning

provides a systematic solution for combining various

learners' predictive power. The result is a single model

that provides multiple models of aggregated

performance. Bagging and boosting are two

commonly used ensemble learners in decision trees.

Trees are constructed sequentially in boosting, so that

each subsequent tree seeks to decrease the past tree's

errors. Each tree learns and updates the remaining

errors from its predecessors. The tree growing next in

the sequence will therefore learn from an updated

version of the residuals. In this paper, we would also

focus on XGBoost, a gradient boosted decision tree.

Methodology

A. Data Selection

 BlackRock Energy & Resources Trust (BGR) was

selected as the stock to be used for analysis. Open,

high, low, close and volume data from 2005 to 2017

was obtained from Kaggle. Using an 80-20 train-test

split, the test set spans a duration of 2.5 years, from

mid-2015 to 2017. A plot of the closing price is shown

below.

B. Data Pre-processing

 We aim to predict the next day’s closing prices

using data from the past N days, which means a

forecast horizon of 1 day. One of the hyperparameters

to be tuned is N, which we set to be a range from 4 to

10 days. Train and test data were normalised using

data from the past N days.

C. Trade Execution

 A simple strategy was proposed; if the predicted

price of the next day is larger than that of the previous

day, we would either hold our position if we are

already holding onto the stock, or buy 1 unit of the

stock if we are not currently holding onto any. If the

predicted price is lower than that of the previous day,

we would sell off the stock (if any).

D. LSTM Architecture

 The above shows the LSTM architecture which we

used. We used one layer of LSTM modules, and a

dropout layer to avoid over-fitting, and finally a fully

connected dense layer before the output. A linear

activation function was used; mean absolute error

(MAE) was utilised as the loss; and the Adam

optimiser was used.

 The hyperparameters tuned included N (previous N

days used to predict the stock price of the next day),

the dropout rate, number of neurons in the single layer,

epochs and batch size.

Results

A. Metrics

 1. Sharpe Ratio: We define it to be the mean of the

daily returns divided by the sampled standard

deviation of the daily returns, multiplied by the square

root of 252, the number of trading days per year in the

USA markets. A value above 1 is considered to be

acceptable.

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑚𝑒𝑎𝑛(𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

𝑠𝑑(𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)
√252

 Comparing the price of the next day and the current

day, 2 labels were generated, Increase and Decrease.

We then create a confusion matrix, which reports the

number of false positives (FP), false negatives (FN),

true positives (TP) and true negatives (TN). 2 more

metrics were then generated from the confusion

matrix:

2. Precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

3. F1 score:

We first define recall:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Then F1, which ranges from 0 to 1:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

B. Evaluation

 We used a Linear Regression model as the base

model, and tuned the hyperparameter, N days. N = 6

gave the largest Sharpe Ratio, which we used as the

final model.

 For XGBoost, we tuned the following

hyperparameters: N days, number of estimators,

maximum depth of a tree, learning rate, minimum sum

of instance weight (hessian) needed in a child,

subsample ratio of the training instances, subsampling

of columns by tree and by level, and gamma.

 The hyperparameters tuned for LSTM were covered

in the previous section.

 After hyperparameter tuning, the evaluation of the

results is shown in the table below:

 Sharpe Precision F1

Linear

Regression
0.56 0.47 0.47

XGBoost 1.47 0.51 0.51

LSTM 1.64 0.51 0.51

 Both XGBoost and LSTM performed much better

than the base Linear Regression model in terms of

Sharpe Ratio. The precision and F1 metrics are also

higher than the base model.

Discussion

 Although it is promising to use neural networks and

boosted trees as a predictive instrument, we have

experienced several constraints and limitations.

 The metrics precision and F1 could have been better

handled by defining a separate problem. A 2-class

(Increase or Decrease) prediction problem could have

been used instead of regression to predict Closing

price. By changing the labels and the loss function to

fit the metrics, the precision and F1 scores would likely

be much higher. This would also be in line with our

trading strategy as well.

 In this paper, we focused more on the optimisation

of the model, over the trade execution. To improve the

Sharpe ratio of all the models, other trading strategies

that incorporate the magnitude of increase of the

predicted closing prices with the amount of stocks

bought or sold can be considered as well.

 It is still possible to further improve the

performance of the LSTM model in terms of the

Sharpe ratio. The optimiser (set as Adam), number of

layers (set as 1), regularisation method (set as

Dropout), and the loss function (set as mean absolute

error (MAE)) are also possible parameters to be

adjusted. We tried creating a 2-layer LSTM

architecture with a Dropout layer in between, but that

did not perform as well as the single layer LSTM

model. Perhaps more layers are required to improve

the performance of the model. However, using a more

complicated model would result in a longer training

duration, as well as a higher chance of overfitting.

 One issue with neural networks is that it has the

tendency to overfit to the training data. This would

make the model perform worse on the test set, or on

new sources of data. One method to check for

overfitting would be to use a validation set along with

the training set, and the losses of both sets would be

compared; if the training loss and validation loss are

close to each other, then likely overfitting did not

occur. To resolve overfitting, training could be

stopped prematurely, or a stronger regularisation could

be added.

 Only one stock was randomly selected for analysis

in this paper. Experiments could have been run over

other stocks to compare their performances, to

recognise if similar Sharpe ratio could be achieved

across various stocks. The hyperparameters of the best

model for each stock could also be compared to

understand the main parameters to be tuned, so that the

model could be easily scaled for future usage. A

portfolio of stocks, or other asset classes could be

considered as well.

References

Kaggle.com. (2019). LSTM model of StockData |

Kaggle. [online] Available at:

https://www.kaggle.com/johanvandenheuvel/lstm-

model-of-stockdata/data [Accessed 9 Jun. 2019].

Towards Data Science. (2019). Machine Learning

Techniques applied to Stock Price Prediction.

[online] Available at:

https://towardsdatascience.com/machine-learning-

techniques-applied-to-stock-price-prediction-

6c1994da8001 [Accessed 9 Jun. 2019].

Analytics Vidhya. (2019). Predicting the Stock

Market Using Machine Learning and Deep Learning.

[online] Available at:

https://www.analyticsvidhya.com/blog/2018/10/predi

cting-stock-price-machine-learningnd-deep-learning-

techniques-python/ [Accessed 9 Jun. 2019].

