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Introduction 
 

    A Neural Network is a model that operates similarly 

to the human brain. A neural network is made up of 

numerous small units called neurons; these neurons 

are gathered into several layers. Layers are segments 

of neurons that are connected to one another through 

their neurons. Each neuron is connected to another 

layers’ neuron through weighted connections. The 

weighted connections are adjusted with a real-valued 

number that is associated with them. A neuron takes 

the value of a connected neuron and multiplies it with 

their connections’ weight. The aggregation of all the 

connected neurons is the neurons’ bias value. The bias 

value is then passed to an activation function which 

transforms the value and assigned it to the connected 

neuron in the next layer. This value is circulated 

through the entire network. In order to adjust the 

weights to fit the output better, a feedback mechanism 

known as backpropagation is implemented. One of the 

models this paper would focus on Long Short-Term 

Memory (LSTM), a recurrent neural network, which 

resolves the vanishing gradient problem during 

backpropagation. 

    Sometimes relying on the outcomes of just one 

model may not be enough. Ensemble learning 

provides a systematic solution for combining various 

learners' predictive power. The result is a single model 

that provides multiple models of aggregated 

performance. Bagging and boosting are two 

commonly used ensemble learners in decision trees. 

Trees are constructed sequentially in boosting, so that 

each subsequent tree seeks to decrease the past tree's 

errors. Each tree learns and updates the remaining 

errors from its predecessors. The tree growing next in 

the sequence will therefore learn from an updated 

version of the residuals. In this paper, we would also 

focus on XGBoost, a gradient boosted decision tree. 

 

Methodology 

A. Data Selection 
 

    BlackRock Energy & Resources Trust (BGR) was 

selected as the stock to be used for analysis. Open, 

high, low, close and volume data from 2005 to 2017 

was obtained from Kaggle. Using an 80-20 train-test 

split, the test set spans a duration of 2.5 years, from 

 

mid-2015 to 2017. A plot of the closing price is shown 

below. 

 

 
 

B. Data Pre-processing 
 

    We aim to predict the next day’s closing prices 

using data from the past N days, which means a 

forecast horizon of 1 day. One of the hyperparameters 

to be tuned is N, which we set to be a range from 4 to 

10 days. Train and test data were normalised using 

data from the past N days. 

 

C. Trade Execution 
 

    A simple strategy was proposed; if the predicted 

price of the next day is larger than that of the previous 

day, we would either hold our position if we are 

already holding onto the stock, or buy 1 unit of the 

stock if we are not currently holding onto any. If the 

predicted price is lower than that of the previous day, 

we would sell off the stock (if any). 

 

D. LSTM Architecture 

 

  



    The above shows the LSTM architecture which we 

used. We used one layer of LSTM modules, and a 

dropout layer to avoid over-fitting, and finally a fully 

connected dense layer before the output. A linear 

activation function was used; mean absolute error 

(MAE) was utilised as the loss; and the Adam 

optimiser was used.  

    The hyperparameters tuned included N (previous N 

days used to predict the stock price of the next day), 

the dropout rate, number of neurons in the single layer, 

epochs and batch size. 

 

Results 
 

A. Metrics  
 

    1. Sharpe Ratio: We define it to be the mean of the 

daily returns divided by the sampled standard 

deviation of the daily returns, multiplied by the square 

root of 252, the number of trading days per year in the 

USA markets. A value above 1 is considered to be 

acceptable. 

 

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝑚𝑒𝑎𝑛(𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)

𝑠𝑑(𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛𝑠)
√252 

 

 

    Comparing the price of the next day and the current 

day, 2 labels were generated, Increase and Decrease. 

We then create a confusion matrix, which reports the 

number of false positives (FP), false negatives (FN), 

true positives (TP) and true negatives (TN). 2 more 

metrics were then generated from the confusion 

matrix: 

 

2. Precision: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

3. F1 score: 

 

We first define recall: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Then F1, which ranges from 0 to 1: 

 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

B. Evaluation 
 

    We used a Linear Regression model as the base 

model, and tuned the hyperparameter, N days. N = 6 

gave the largest Sharpe Ratio, which we used as the 

final model. 

    For XGBoost, we tuned the following 

hyperparameters: N days, number of estimators, 

maximum depth of a tree, learning rate, minimum sum 

of instance weight (hessian) needed in a child, 

subsample ratio of the training instances, subsampling 

of columns by tree and by level, and gamma. 

    The hyperparameters tuned for LSTM were covered 

in the previous section. 

 

    After hyperparameter tuning, the evaluation of the 

results is shown in the table below: 

 

 Sharpe Precision F1 

Linear 

Regression 
0.56 0.47 0.47 

XGBoost 1.47 0.51 0.51 

LSTM 1.64 0.51 0.51 

 

    Both XGBoost and LSTM performed much better 

than the base Linear Regression model in terms of 

Sharpe Ratio. The precision and F1 metrics are also 

higher than the base model. 

 

Discussion 
 

    Although it is promising to use neural networks and 

boosted trees as a predictive instrument, we have 

experienced several constraints and limitations. 

    The metrics precision and F1 could have been better 

handled by defining a separate problem. A 2-class 

(Increase or Decrease) prediction problem could have 

been used instead of regression to predict Closing 

price. By changing the labels and the loss function to 

fit the metrics, the precision and F1 scores would likely 

be much higher. This would also be in line with our 

trading strategy as well. 

    In this paper, we focused more on the optimisation 

of the model, over the trade execution. To improve the 

Sharpe ratio of all the models, other trading strategies 

that incorporate the magnitude of increase of the 

predicted closing prices with the amount of stocks 

bought or sold can be considered as well.  

     

  



    It is still possible to further improve the 

performance of the LSTM model in terms of the 

Sharpe ratio. The optimiser (set as Adam), number of 

layers (set as 1), regularisation method (set as 

Dropout), and the loss function (set as mean absolute 

error (MAE)) are also possible parameters to be 

adjusted. We tried creating a 2-layer LSTM 

architecture with a Dropout layer in between, but that 

did not perform as well as the single layer LSTM 

model. Perhaps more layers are required to improve 

the performance of the model. However, using a more 

complicated model would result in a longer training 

duration, as well as a higher chance of overfitting.   

    One issue with neural networks is that it has the 

tendency to overfit to the training data. This would 

make the model perform worse on the test set, or on 

new sources of data. One method to check for 

overfitting would be to use a validation set along with 

the training set, and the losses of both sets would be 

compared; if the training loss and validation loss are 

close to each other, then likely overfitting did not 

occur. To resolve overfitting, training could be 

stopped prematurely, or a stronger regularisation could 

be added. 

    Only one stock was randomly selected for analysis 

in this paper. Experiments could have been run over 

other stocks to compare their performances, to 

recognise if similar Sharpe ratio could be achieved 

across various stocks. The hyperparameters of the best 

model for each stock could also be compared to 

understand the main parameters to be tuned, so that the 

model could be easily scaled for future usage. A 

portfolio of stocks, or other asset classes could be 

considered as well. 
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